
Int. J. Solids Structures, 1972, Vol. 8, pp. 733 to 750. Pergamon Press. Printed in Great Britain

OPTIMAL PLASTIC DESIGN OF
DOUBLY SYMMETRIC CLOSED STRUCTURES

S. C. BATTERMANt and L. P. FELTONj

Department of Aeronautical Engineering, Technion-Israel Institute of Technology, Haifa, Israel

Abstract-Optimal plastic design of doubly symmetric closed ring and frame structures of idealized sandwich
section is formulated utilizing the Marcal-Prager optimization method. Detailed results are presented for
elliptical rings and rectangular frames under uniform internal pressure. As the design load increases, the elliptical
ring requires consideration of two optimal design configurations while the rectangular frame requires considering
eight distinct possible design configurations. Curves of total cost as a function of design load are presented and
results for pure bending are obtained as special cases.
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half-depth of cross-section
moment, membrane force, shear force, respectively, Fig. 2
plastic resistance of section
minimum specified plastic resistance
semi-diameters, Fig. I
force per unit length
collapse load for uniform frame of resistance Y
arc lengths
radius of curvature
velocities
unit vectors
generalized strain rates
constant
polar coordinate of generic point
angles defined in Fig. 2
rate of rotation
total cost

1. INTRODUCTION

OPTIMAL structural design is a rapidly expanding field as evidenced by the large number
of recent papers reviewed in the comprehensive article by Sheu and Prager [1]. The basis
for the present study is the method of optimal design of perfectly plastic structures intro­
duced by Marcal and Prager [2] which is concerned with minimization of total cost.
Recently, Martin [3] reformulated optimal structural design criteria for a general class of
material behavior and showed that the optimization method of Ref. [2] can be recovered
as a special case. Attention in the present study will be confined to perfectly plastic structures
and we will refer to the optimization technique of Ref. [2] as the Marcel-Prager scheme.

t On leave 1970-71 from Towne School, University of Pennsylvania, Philadelphia, Pennsylvania.
t On leave 1970-71 from School of Engineering and Applied Science, University of California, Los Angeles,

California.
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734 s. C. BATTERMAN and L. P. FELTON

The only application of the Marcal-Prager scheme to closed ring and frame structures
is due to Prager [4J who considered the design of a circular ring under two diametrically
opposed concentrated loads. The purpose of this paper is to extend the formulations of
[2, 4J to a broad class of doubly symmetric closed structures, Fig. 1. Limit analysis of
such structures has been treated previously by Batterman [5J.

B

b

FIG. 1. Representative doubly symmetric closed structure.

Detailed design results are presented herein for elliptical rings and rectangular frames
under uniform internal pressure. The elliptical ring is representative of structures whose
geometry is such that the distance p of the reference line from the center, Fig. 1, varies
monotonically from A to B while the membrane force varies continuously in the same
interval. The rectangular frame is typical of structures where p does not vary monotonically
from A to B and, in addition, the membrane force is discontinuous at the corner.

2. GOVERNING EQUATIONS

1. Statics, kinematics

A doubly symmetric closed structure of arbitrary shape subjected to uniform internal
pressure q per unit length is shown in Fig. 1. The semi-diameters along the axes ofsymmetry
are denoted by a and b, where a > b and the structure is assumed smooth at A and B for
simplicity. The distance of a point on the reference line of the structure from the center
(intersection of the axes of symmetry) is denoted by p. To avoid possible confusion it is
noted that p is not, in general, the radius of curvature of the reference line.

A free-body diagram of a portion of the structure from A to a generic point P is shown
in Fig. 2 where the positive directions of the stress resultants acting on the cross-section
are also indicated. The membrane force N at point A is qa while the shear force Q is zero.
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FIG. 2. Notation and sign convention.
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By summing forces in Fig. 2 it can be shown [5] that the bending moment is given by

while the membrane and shear forces are given by, respectively

N = qp sin(l1+ f3)

Q = qp cos(11 + f3)

(1)

(2)

(3)

where 0 and f3 are angles defined in the figure. Note that 11 + f3 is the angle between the
radius vector 15 and the tangent to the reference line (direction of N) at the point. For a
given geometry f) + f3 may be considered to be a function of p but it is noted that this function
is not necessarily single-valued or continuous.

To describe the kinematics of the problem reference is again made to Fig. 2. The arc
length to a point from some reference point, say A, is denoted by s while es and en are unit
vectors tangent and normal, respectively, to the reference line. The angle t/J is the angle
that the normal to the reference line makes with the x axis while r is the radius of curvature
at the point P. The components of velocity in the directions of es and en will be denoted
by Vs and Vn' respectively.

If we adopt the classical Bernoulli-Euler assumption that plane cross-sections of the
structure remain plane and normal to the reference line as the structure undergoes de­
formation it may readily be shown that the generalized rate of strain associated with axial
force is

f. = V'+~
s r

while the generalized rate of strain associated with bending moment is

(4)

(5)
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In (4) and (5), primes denote derivatives with respect to sand ,jJ = vs/r- v~ is the rate of
rotation of a given section. Furthermore it is noted that only M and N are the generalized
stresses while Qis a reaction to the kinematic constraint ofthe Bernoulli-Euler assumption.

2. Yield condition, Marcal-Prager optimization scheme

The structures to be examined in detail in the following developments will be assumed
to have idealized sandwich sections consisting of two thin perfectly plastic face sheets
of variable area separated by a core of constant specified depth 2H. The yield condition
for such sections is

IM(p)I+HIN(p)j = Mip) (6)

where M p is the fully plastic moment or plastic resistance of the section. M, Nand M p

are taken as functions of p, Fig. 1, and no confusion should arise in those situations when
() + f3 is not a single-valued and/or continuous function of p. Equation (6) is represented
by the square locus shown in Fig. 3 where the flow rule is also indicated [6].

Optimal designs will be obtained by following procedures originated by Marcal and
Prager [2] and subsequently applied by Prager to circular rings [4]. Cost per unit length,
cjJ, will be assumed proportional to the value of plastic moment in excess of some prescribed
minimum, Y; i.e.

{
0 for 0 :5 M p :5 Y

1>(Mp ) =
ct.(Mp - Y) for M p > Y

where 0( is a constant. Total cost of a structure is then given by

<I> = f. cjJ(Mp) ds.

(7a)

(7b)

(8)

It has been shown [2, 4] that optimal designs are obtained from equations (6H8)
whenever the stress resultants are in equilibrium with the applied loads and compatible
with generalized strain rates satisfying

lei = Iv~+~i ={O
for M p = Y (9a)

. . O(H for M p > Y (9b)

IKI = I(v~-~),I = {~
for M p = Y (9c)

for M p > Y. (9d)

The optimal design determined by the aforementioned procedure will have minimum
total cost, equation (8), and will consist of a distribution of M p from which the variable
face sheet cross-sectional area is obtained as A = M p/2Hao.
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3. DESIGN ILLUSTRAnONS

1. Monotonically decreasing p

(a) General formulation. As the first design illustration consider a structure where p
varies monotonically from p = a to p = band e, Fig. 2, is continuous in the same interval.
For loads q < qo where [5J

(10)
4Y

qo = a2-bz+2H(a+b)

the structure designed with minimum section Y will be sufficient to carry the loads. When
q = qo the structure will collapse, in the limit analysis sense, with plastic hinges forming
at A and B. In order to carry loads q > qo the minimum section Y must be increased in
some regions while it will suffice in others. The goal is to find the distribution of the fully
plastic resistance M p which will minimize the total cost.

One quadrant of the structure at incipient collapse is shown in Fig. 4. The darker lines
emanating from A and B schematically indicate the extent of the regions in which Mp(p),
to be determined, is greater than Y. At the end of interval CD (or beginning of @), where
s = 8 1 and at the beginning of interval Q) (or end of@), where s = sz' the minimum plastic
resistance Y is sufficient. Hence it follows from (6) that

M(Pl)+HN(P1) = Y

-M(pz)+HN(pz) = Y.

(1Ia)

(lib)

From conditions (9) resulting from the Marcal-Prager optimization scheme we have:
Interval CD (0 ~ s ~ SI)

B= rxH

(l2a)

(12b)

Mp

Mp

A:E.. ~.:: Mp.2<ToHA

00. YIELD STRESS
Of MATERIAL

.-
M,x

f------MP--J.--MP---i

FIG. 3. Yield locus and flow rule for idealized sandwich section.
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OPTIMALITY CONDITION: 5, =53-52

FIG. 4. Configuration for monotonically decreasing p (heavy lines indicate regions of equal length in
which Mp > Y).

Interval a:> (SI S 5 S 5z)

Ii:=O

i = 0

Ii: = -IX

i = IXH.

(l3a)

(13b)

(l4a)

(14b)

Combining (5) with the first of equations (12)-(14) and using the fact that l/J must be
continuous at Sl and 5 z and vanish at 5 = 0 and S3 [4J, we obtain

(15)

(16)

Hence at the optimum design, equation (15) states that the length of interval CD is
equal to the length of interval 0). Note that equation (15) includes as a special case the
condition derived by Prager [4J for a circular ring. It is worth emphasizing that equation
(15) is independent of the type of loads carried by the ring and is the key to obtaining
optimal designs for structures of the type considered in this section.

For a given geometry, pairs of values of PI' pz satisfying (15) may be obtained. Once
corresponding PI and pz are known q and M may be determined from (1) and (II). The
optimal design is then obtained from (1), (2) and (6) as will now be shown.

Substituting (1) and (2) into (11) and solving for q gives

q 1- (b/a)Z +2(H/a)( 1+b/a)

qo = (p l/a)Z - (pz/a)Z +2(H/a)[(ptla) sin(OI +PI) +(pz/a) sin(()z + pz)]
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where use has been made of equation (10). Quantities with the subscript 1 are evaluated
at P = P1 while quantities with the subscript 2 are evaluated at P = P2'

M can be expressed in either of the following forms

(17)

or

(18)

From equation (17)

1M! = y+~(p2-pi)-HqP1 sin(e1+/31)'

while from (18)

P ~ P1 (19)

(20)

Hence the optimum design follows from (2), (6), (19) and (20) as

a ~ P ~ P1 (21a)

(21 b)

(21c)

The total cost is obtained from

(22)

where the integration extends over one quadrant of the structure.
The optimal design given by equations (21) is valid until region CD joins region Q) at

Sl = S2 = S3/2 and region Q) has vanished entirely. Suppose this joining-up occurs at
q = q* corresponding to P = P* at Sl = S3/2. Since M = 0 at P = P* it follows from
(1) and (11)

(23)

(24)

where we note that for a given geometry e* and /3* are evaluated at P*. Note that (24)
can also be obtained from (16) when P1 = P2 = P*.
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It then follows from (6) and (23) that the optimal design for q ;:::: q* is given by

(25)

The total cost is still obtained from (22) with M p now given by (25).
It is worth mentioning that the effect of axial force in all the preceding equations, as

well as in the entire paper, can easily be traced by simply noting those terms containing H.
Results for pure bending, i.e. with axial force interaction neglected in the yield condition,
can be obtained by setting H = 0 in all equations where it appears. In particular note
that if axial force interaction were neglected, regions (1) and (3) would join only at infinite
q*, equation (16) or (24).

(b) Numerical results for elliptical ring. The equations of the previous section, which
are independent of the shape as long as the conditions on p are satisfied, will be used to
obtain numerical results for the family of elliptical rings

(26)

for discrete aspect ratios (bla) varying from zero to unity. In fact, results for a circular ring,
bla = 1, may be obtained immediately from the equations of the previous section as

M p = qaH

Y
qo = q* =­

aH

and

N = qa, M =0 (27a,b)

(27c)

(27d)

(28)

It is also worth mentioning that for uniform internal pressure the pure bending
approximation is obviously not physically meaningful for a circular ring.

Figure 5 shows curves of Pl' Pz which satisfy the optimality conditions, equation (15)
and Fig. 4, for three discrete aspect ratios. These curves were numerically obtained on a
digital computer from the elliptic integral expressions which result from the equal arc
length condition, equation (15). Optimal designs can then be obtained from Fig. 5 and
equations (21).

Total cost, equation (22), was obtained by numerical integration and is shown in
Fig. 6. The abscissa was chosen in order to facilitate cost comparisons at a given design
load q for prescribed values of Yand a. The value H/a = 0·1 is considered to be the highest
reasonable value for a structural theory approach to be valid. Results for pure bending
(H/a = 0) are also shown in Fig. 6 as well as equation (28) for a circular ring.

It is seen from the figure that axial forces have a considerable effect on the cost. In
addition, the choice of aspect ratio has a major influence on the cost at a given design load.
Furthermore because of axial force interaction and the choice of non-dimensionalized
coordinates, the cost curves can cross and, indeed, do for the aspect ratios shown in Fig. 6.
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FIG. 5. Relationships between P, and P2 which satisfy optimality criterion, equation (15), for elliptical
rings of various aspect ratios.
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FIG. 6. Nondimensionalized cost ys. load for plastically optimized elliptical rings of various aspect ratios.
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Hence, if faced with a choice of several competing aspect ratios for a given range of design
loads it is necessary to determine the entire cost curves in order to arrive at the most
efficient, Le. least cost, design.

2. Non-monotonic p: rectangular frame

As the second design illustration consider a rectangular frame, a 2:: b, one quadrant of
which is shown in Fig. 7. The significant feature of the rectangular frame for the purposes
of this illustration is that p does not vary monotonically from A to B. In addition the
membrane force changes discontinuously from qa to qb at the corner. Consequently, the
details ofthe solution are considerably more involved than in the previous case and require
distinguishing between several distinct configurations in which M p has to be increased
over the specified minimum Y in certain regions.

y
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x- INFLECTION POINT

FIG. 7. Possible configurations for plastically optimized rectangular frames (heavy lines indicate regions
in which M p > Y; dashed arrows indicate possible sequences of development of various configurations).
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(29)

(a) Initial configuration. The collapse load qo for a frame of uniform minimum section
Y may be obtained from equations (1), (2) and (6) as

4Y

Equation (29) is derived by noting that hinges will form at the corners in the shorter
sides, where M and N have maximum values, and at the mid-points of the longer sides
[(0, b) and (0, b)J where the moments have minimum algebraic values.

For loads slightly greater than qo the optimal design will have the initial configuration
shown in Fig. 7.1 where the heavy lines indicate the regions where Mp > Y. Following
the procedure which led to (15), the regions of increased resistance in Fig. 7.1 must have
equal length, i.e. 12 = 14 = I. The equations governing the initial configuration are then
obtained as

(30a)

(30b)

(30c)

(3Od)

which lead to

(31)

(32)

The initial configuration for the optimal design will terminate in one of two ways,
beyond which new formulations are necessary depending on the ratios bfa, H/a and q/qo'
First, the region of increased resistance may propagate along the short side to point A.
Second, before the region of increased resistance propagates to A a new region of increased
resistance may start to propagate from the corner C into the long side. It may also be
shown that what appears to be a third possibility of the initial configuration terminating
by a region of increased resistance starting at A and propagating into the short side will
not occur.

Consider first the case when the configuration of Fig. 7.1 terminates by the region of
increased resistance spreading to A. This occurs when I = b at loads designated qi. From
(31) it follows immediately that

qi 1
qo 1- 2(b/a)2

1+2(H/a)(1 +b/a)

Next consider the configuration of Fig. 7.1 terminating when a region of increased
resistance starts at C into the long side at loads designated q!. The limiting condition is
now

(33)
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(34)

(35)

(36b)

(36a)

which, when combined with (30a), leads to

qi 1+2(H/a)(1 +bla)
qo 1- (l/a)Z +4(Hla)(blaf

Solving (31) and (34) simultaneously results in

qi [ H( b)Jqo= 1+2;1+~

x {2(b/a)Z - [1 + 2(Hla)(1 + bla)) + 2(bla) [(bla)2 + 2(bla)(Hla)- 2(Hla)]t}
4(bla)z[l +4(b/a)(Hla)] - [1 + 2(Hla)(1 + b/aW .

Equations (32) and (35) intersect at
H

(bla)1.2 = -;+ J[(Hla)2 +2(Hla)]

ql.2 1+2(Hla) {1-(Hla)+ J[(H/a)2 +2(Hla)]}
qo = 1- 2(Hla) - 6(Hla) {Hla - J[(H/a)2 +2(Hla)]}'

Figure 8, about which more will be said shortly, shows equations (32) and (35) for
Hla = 0·1. The intersection (36) occurs at (bla)1.z == 0·358, qtzlqo == 1·252. This is denoted
by point E in Fig. 8.

(b) Formulations/or q > q! and q > qi. (a) bla < (bja)1.2: For frames with bla < (b/a)l,2
the initial configuration terminates by the region of increased resistance propagating to A,
Fig. 7.111. We then note that because of the discontinuity in N at C, a new region ofincreased
resistance will not start to propagate from C into the long side until the load exceeds a
value designated qj. For loads q! ~ q ~ qj the optimal configuration will be shown in
Fig. 7.111, where M p can be determined from (1), (2), (6) and (30a) (with I = b). The limiting
condition governing the determination of qj is (33) and qj can, in fact, be determined
immediately from (34) with I = b. Hence

(37)
qj 1+2(Hla)(1 +bla)
qo 1-(b/a)2+4(H/a)(bla)

which is also shown in Fig. 8 for Hla = 0·1. One end point of (37) coincides with (36)
while the other end point (at bla = 0) is denoted by D in Fig. 8. Note that points D and E
approach the origin (0, 1·0) as Hla -+ 0, indicating that for a condition of pure bending
configurations 7.1 and 7.m could not occur and the initial configuration for qlqo > 1·0
would correspond to that shown in Fig. 7.11.

For loads slightly greater than qj the configuration is given by Fig. 7.V. The pertinent
equations governing this configuration are similar to (30),

(38a)

MA+~(p~-a2)+Hqb= Y

p; = b2 +l~

p~ = b2 +(a-13f

(38b)

(38c)

(38d)
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FIG. 8. Configuration regions for plastically optimized rectangular frames, Bfa = 0·1 (Roman numerals
correspond to configurations shown in Fig. 7).
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(39)

b+13 =/4 (38e)

where it is noted that equation (38e) follows from the optimization conditions (9). Equa­
tions (38) may be solved simultaneously with the result

q 1+2(Hja)(l+bja)

qo (1 +bja) [1-(bja)- 2(l3ja)] +4(Hja)(bja)'

Configuration 7.V is valid for qj s q s q! where q! is the load at which 13 + 14 = a.
From this and equation (38e) we conclude that for q ~ q!

Substituting (40) in (39) then gives

13 = (a-b)j2. (40)

(41)

a portion of which is shown in Fig. 8. It is worth noting that the junction of 13 and 14 occurs
at an inflection point (M = 0).

(b) bja > (bjah.2: As noted previously, for bja > (bja)l,2 the initial configuration
terminates when q = q!. For q slightly greater than q!, the regions of increased required
resistance will be as shown in Fig. 7.11. The governing equations are given by (38) with
the exception that equation (38e) is replaced by

12 +13 = 14 (42a)
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(42b)

(43a)

(43b)

(44)

p~ a2+(b-12)2 (42c)

are required. These last two equations are identical to (30b) and (30d). Equations (42)
and (38) may be reduced to

q 1+2(Hja)(1 +bja)

qo 4(Hja)(bja) + 1-(l2ja? -2[(l2ja) + 1J(l~ja)

I
.2 = 1--/[1 +2(Hja)(1-bja)-2(bja)(l2ja)+(l2ja)2].
a

As was the case for the initial configuration, configuration 7.II may also terminate
in one of two ways. First, the region of increased resistance in the short side may propagate
from the corner to A, and second, a new region of increased resistance may start to propagate
from A.

The load q~ at which the configuration of Fig. 7.11 terminates by the region of increased
resistance spreading from the corner to A is given by (43) with 12 = b,

q! 1+2(Hja)(1 +bja)

qo = 4(Hja)(bja) -(1 +bja)2 +2[1 +(bja)]-/ {(1- bjaH1 +2(Hja) + (bja)]} .

The limiting condition for the second possibility, in which the required resistance at
A reaches Yat loads q~, is

Combining this with (42) leads to

q~ 1+2(Hja)(1+bja)._- =
qo [(bja)-(l2jaW +4(Hja)'

(45)

(46)

Simultaneous numerical solution of (46) and (43) leads to qtlqo as a function of bja and
Hja only.

In Fig. 8, equations (44) and (46) are shown over their ranges of applicability for
Hja = 0·1. The intersection (bja)s 6' denoted by F in Fig. 8, is equal to approximately
0·5988 and approaches 0·6 as Hja ~ O. The value (bjals,6 represents a boundary between
subsequent configurations at loads greater than that corresponding to point F.

For bja < (bja)S,6 and q slightly greater than q~ the configuration is again given by
Fig. 7.V. Thus, for frames with (bjah,2 ::s; bja ::s; (bja)S,6 and q > q~, optimal designs are
defined by the same configurations as for the previously examined frames with bja < (bja)1,2
and q > q~.

For bja > (bjals,6 and q slightly greater than q~ the configuration is given by Fig. 7.IV.
The governing equations are (38), (42b) and (42c) with the addition of

(47a)

(47b)
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(48)

and the replacement of equation (38e) by the optimization requirement

11 +/4 = 12 +/3 , (47c)

Equations (38), (42) and (47) constitute a system of nine simultaneous equations in nine
unknowns which are amenable to numerical solution.

Configuration 7.IV terminates at loads q~ for which the regions of increased resistance
in the short side meet at some point intermediate to A and C. The values of this limiting
load may be obtained directly from equations (42b), (47a) and (47b) by setting PI = P2 or,
equivalently, by noting that the junction of 11 and 12 occurs at an inflection point. The
result is

q~ =~ = 11+2(H)(1+~)J /4(H).
qo Haqo L a a a

Equation (48) has as one end-point the previously defined point F (Fig. 8), indicating that
at F four configurations occur simultaneously.

For loads slightly greater than q~, the configuration is as shown in Fig. 7.VI. The
governing equations follow immediately from those for Fig. 7.IV by setting PI = P2'
as noted above. Furthermore, the subsequent limiting loads for the termination of con­
figuration 7.VI are defined by the same equations with P3 = P4' The result is identical
to equation (41) derived previously (q!Hb = Y) and appears in Fig. 8 as the boundary
between regions VI and VIII.

(c) Numerical results. It is evident from Figs. 7 and 8 that the optimal design of a
general rectangular frame is tedious and divides itself into the consideration of eight
distinct configurations. For illustrative purposes, relevant results will be presented for
two cases, i.e. a square frame (b/a = 1) and a frame with b/a = 0·5.

(a) b/a = 1·0: The collapse load qo for a square frame of uniform minimum section
Y is obtained as a special case of (29) as

(49)

For q > qo it follows from symmetry that the optimal configuration is given by Fig. 7.IV
with PI = P4 (/1 = 14)and P2 = P3 (/2 = 13), The optimization condition (47c) then requires
11 = 13 = I. From equations (42) and (47) we find

(50)

(51)

Y willIt follows from (50) that the interval of minimum uniform plastic resistance
vanish (l = a/2) for q 2': q* where

q* =~ = q 11 +~ ~J
aH °L 4 H

which is a special case of equations (41) or (48).
For the case of pure bending note that q* would be infinite and (50) would reduce, as

it must, to the corresponding expression derived by Marcal and Prager [2J for a fully
fixed beam.
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Completing the design leads to

M p(p) = Y+~(pf - p2),

Mp(p) = Y,

M p(p) = Y +~(p2 _ p~), P2 :::; P :::; aJ2

(52a)

(52b)

(52c)

when q :::; q* and

when q 2 q*.
Evaluating the total cost from (22), (52) and (53) gives

q) = ~qa3(1-~r( 1+4~r = 4~Ya:J1-~r( 1+4~)
when q :::; q* and

(53)

(54)

(55)

when q 2 q*.
Figure 9 shows a nondimensionalized plot of cost vs. load obtained from equations

(54) and (55). Although the functional form of the cost equation changes at q = q* it
follows from (54) and (55) that the slope of the curve for bla = 1·0 in Fig. 9 is continuous
at q = q*. The curve for pure bending, Ria = 0, is obtained from equation (54).

(b) bla = 0·5: As may be seen from Fig. 8 a frame with bla = 0·5 assumes, in sequence,
optimal configurations shown in Figs. 7.1, 7.Il, 7.V and 7.VII as qlqo increases from 1·0.
Corresponding required plastic moments and costs are presented in this section. Those of
region I will be omitted because of this region's limited extent (qlqo ::;; 1·095) which decreases
with decreasing Ria, and in the interest of brevity.

From equations (6), (38) and (42), the resistance required in those segments of con­
figuration 7.11 where M p > Y may be given by

(56)

Here, N equals qa in the short side and qb in the long side. Substituting (56) into equation
(8) results in

* *q2 <!i < qs
qo - qo - qo

where qlqo, 121a and 131a are obtained from equations (43).

(57)
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FIG. 9. Nondimensionalized cost vs. load for plastically optimized rectangular frames.

Similar procedures applied to the governing equations of configuration 7.V lead to

<I> [15 H 4(H)2J l(qo)( H)[ (qo)( H)- = -+4-+- - +- - 1+3- 2 - 1+3-
qcx.a3 16 a 3 a 6 q a q a

(58)

and, for any value of b/a in configuration 7.VII to

q:3 = ~( 1-~) (1 +~)( 1+3~) +8( ~)(~) - ~o[1+2( ~)

x ( 1+~)J(1+~), (59)

Note that for H/a = 0·1, q~/qo == 1·095, q!jqo == 1·816, q!lqo = 6·5 while for H/a = 0,
q!jqo = 1·0, q!jqo == 2·873 and q!lqo = 00.

Equations (57)-{59) are also shown in Fig. 9 for the values H/a = 0·1 and H/a = O.
It may be seen here too that axial forces have a considerable effect on the cost of optimal
structures. The choice of aspect ratio also has a more pronounced effect on cost of frames
which include axial forces than on those designed with the assumption of pure bending.
Thus, for H/a = 0·1 a frame with b/a = 0·5 is significantly less costly than a square frame
although both are less efficient than similar frames for which H/a is less than 0·1. For
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Ria = 0 the cost difference between frames of the two aspect ratios shown is generally
small. It may also be noted from Figs. 6 and 9 that for the same aspect ratio and value
of qa2/4 Y, rectangular frames are considerably more costly than elliptical rings.

As qlqo --+ 00 the cost curves in Fig. 9 approach asymptotes which are easily evaluated
from equations (54), (55), (58) and (59). It is of interest to note that for Ria = 0 the two
cost curves cross each other and in the limit the cost of the frame with bla 0·5 approaches
et>lqrxa3 15/16 while that for the square frame approaches et>lqrxa3 = 1·0.

4. CONCLUSIONS

Optimal plastic design of doubly symmetric ring and frame structures has been con­
sidered. The Marcal-Prager optimization scheme has been applied to a broad class of
these structures under uniform internal pressure loading and detailed results have been
presented for elliptical and rectangular structures. The extension of the procedures to
encompass other classes of shapes or cross-sections, or other types of self-equilibrating
loading systems is of no conceptual difficulty although computational difficulties may be
considerable.
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A6cTpaKT~l1clIOJlb3Yll MeTOA OlITMMamnaL\MM MapKaJla-flparepe, naeTCR !jJOPMYJlR OlITMMRJlbHOro
paC'feTa B lIJIaCTH'feCKOH 06JlaCTM AJlII ABOHHblX CHMMeTpM'IeCKMX 3aMKHYTbiX KOJIbueBblX M paMHblX
KOHCTpyKUlfH, 06JlanalOlUHx HneanbHblM MHorocToHHblM Ce'leHMeM. npencTaBJllllOTClI lIonpo6Hbie
pe3YJIbTaThi AJIli 3JIJIHnTH'feCKHX KOJleu If nplIMoyroJlbHblX paM, lIOABep)KeHHbIX neHCTBMIO BHyTpeHHoro
,I:laBJIeHHII. Kor,I:la paC'IeTHall Harpy3Ka yBeml'lI1BaeTClI, Torna AJlII 3J1JUllITH'IeCKOrO KOJlbL\a cJleAyeT
paCCMaTpllBaTb ABe paC'IeTHble OlITHMaJlbHble KOH!jJMrypaUI1H, a nJili lIplIMoyroJiHoM paMbl BoceMb
B03MOlKHbiX KOH!jJHfypaUHM. ,UaIOTCII KpHBbie nOJIHOH CTOMMOCTH, BCMblCJle !jJyHKUHH paC'leTHOM Harpy3KIf.
KaK ClIeUlfaJIbHble cnY'laH, nonY'lalOTCll pe3YJlbTaTbi AJJlI '1HCTOrO H3fH6a.


